A sense is a biological system used by an organism for sensation, the process of gathering information about the surroundings through the detection of stimuli. Although, in some cultures, five human senses were traditionally identified as such (namely sight, Olfaction, touch, taste, and hearing), many more are now recognized. Senses used by non-human organisms are even greater in variety and number. During sensation, sense organs collect various stimuli (such as a sound or smell) for transduction, meaning transformation into a form that can be understood by the brain. Sensation and perception are fundamental to nearly every aspect of an organism's cognition, behavior and thought.
In organisms, a sensory organ consists of a group of interrelated Sensory neuron that respond to a specific type of physical stimulus. Via Cranial nerves and (nerves of the central and peripheral nervous systems that relay sensory information to and from the brain and body), the different types of sensory receptor cells (such as mechanoreceptors, photoreceptors, , ) in sensory organs transduct sensory information from these organs towards the central nervous system, finally arriving at the Sensory cortex in the Cerebral cortex, where sensory signals are processed and interpreted (perceived).
Sensory systems, or senses, are often divided into external (exteroception) and internal (interoception) sensory systems. Human external senses are based on the sensory organs of the Human eye, , Human skin, Human nose, and Human mouth. Internal sensation detects stimuli from internal organs and tissues. Internal senses possessed by humans include spatial orientation, proprioception (body position) both perceived by the vestibular system (located inside the ears) and nociception (pain). Further internal senses lead to signals such as hunger, thirst, suffocation, and nausea, or different involuntary behaviors, such as vomiting.
Nonhuman animals experience sensation and perception, with varying levels of similarity to and difference from humans and other animal species. For example, other mammals in general have a stronger sense of smell than humans. Some animal species lack one or more human sensory system analogues and some have sensory systems that are not found in humans, while others process and interpret the same sensory information in very different ways. For example, some animals are able to detect and , air moisture, or polarized light. Others sense and perceive through alternative systems such as echolocation.
A transmembrane protein receptor is a protein in the cell membrane that mediates a physiological change in a neuron, most often through the opening of or changes in the cell signaling processes. Transmembrane receptors are activated by chemicals called . For example, a molecule in food can serve as a ligand for taste receptors. Other transmembrane proteins, which are not accurately called receptors, are sensitive to mechanical or thermal changes. Physical changes in these proteins increase ion flow across the membrane, and can generate an action potential or a graded potential in the .
Receptor cells can be further categorized on the basis of the type of stimuli they transduce. The different types of functional receptor cell types are , photoreceptors, (osmoreceptor), , (in certain mammals and fish), and . Physical stimuli, such as pressure and vibration, as well as the sensation of sound and body position (balance), are interpreted through a mechanoreceptor. Photoreceptors convert light (visible electromagnetic radiation) into signals. Chemical stimuli can be interpreted by a chemoreceptor that interprets chemical stimuli, such as an object's taste or smell, while osmoreceptors respond to a chemical solute concentrations of body fluids. Nociception (pain) interprets the presence of tissue damage, from sensory information from mechano-, chemo-, and thermoreceptors.
+The human sensory and perceptual system !Number !Physical stimulus !Sensory organ !Sensory system !Cranial nerves !Cerebral cortex !Primary associated perception(s)) !Name | |||||||
1 | Light | Human eye | Visual system | Optic (II) | Visual cortex | Visual perception | Sight (vision) |
2 | Sound | Auditory system | Vestibulocochlear (VIII) | Auditory cortex | Auditory perception | Hearing | |
3 | Gravity and acceleration | Inner ear | Vestibular system | Vestibulocochlear (VIII) | Vestibular cortex | Equilibrioception | Balance (equilibrium) |
4 | Chemical substance | Human nose | Olfactory system | Olfactory nerve | Olfactory cortex
![]() | Olfaction | |
5 | Chemical substance | Human mouth | Gustatory system | Facial nerve, Glossopharyngeal (IX) | Gustatory cortex | Gustatory perception (taste or flavor) | Taste |
6 | Position, motion, temperature | Human skin | Somatosensory system | Trigeminal nerve, Glossopharyngeal (IX) + | Somatosensory cortex | Tactile perception (mechanoreception, thermoception) | Touch |
1 | Hearing | Ticking of a watch 6 m (20 ft) away, in an otherwise silent environment |
2 | Vision | Stars at night; candlelight 48 km (30 mi) away on a dark and clear night |
3 | Vestibular | Tilt of less than 30 seconds (3 degrees) of a clock's minute hand |
4 | Smell | A drop of perfume in a volume of the size of three rooms |
5 | Touch | A wing of a fly falling on the cheek from a height of 7.6 cm (3 inches) |
6 | Taste | A teaspoon of sugar in 7.5 liters (2 gallons) of water |
At the molecular level, visual stimuli cause changes in the photopigment molecule that lead to changes in membrane potential of the photoreceptor cell. A single unit of light is called a photon, which is described in physics as a packet of energy with properties of both a particle and a wave. The energy of a photon is represented by its wavelength, with each wavelength of visible light corresponding to a particular color. Visible light is electromagnetic radiation with a wavelength between 380 and 720 nm. Wavelengths of electromagnetic radiation longer than 720 nm fall into the infrared range, whereas wavelengths shorter than 380 nm fall into the ultraviolet range. Light with a wavelength of 380 nm is blue whereas light with a wavelength of 720 nm is dark red. All other colors fall between red and blue at various points along the wavelength scale.
The three types of cone , being sensitive to different wavelengths of light, provide us with color vision. By comparing the activity of the three different cones, the brain can extract color information from visual stimuli. For example, a bright blue light that has a wavelength of approximately 450 nm would activate the "red" cones minimally, the "green" cones marginally, and the "blue" cones predominantly. The relative activation of the three different cones is calculated by the brain, which perceives the color as blue. However, cones cannot react to low-intensity light, and rods do not sense the color of light. Therefore, our low-light vision is—in essence—in grayscale. In other words, in a dark room, everything appears as a shade of Grey. If you think that you can see colors in the dark, it is most likely because your brain knows what color something is and is relying on that memory.
There is some disagreement as to whether the visual system consists of one, two, or three submodalities. Neuroanatomists generally regard it as two submodalities, given that different receptors are responsible for the perception of color and brightness. Some argue that stereopsis, the perception of depth using both eyes, also constitutes a sense, but it is generally regarded as a cognitive (that is, post-sensory) function of the visual cortex of the brain where patterns and objects in Real image are recognized and interpreted based on previously learned information. This is called visual memory.
The inability to see is called blindness. Blindness may result from damage to the eyeball, especially to the retina, damage to the optic nerve that connects each eye to the brain, and/or from stroke ( in the brain). Temporary or permanent blindness can be caused by poisons or medications. People who are blind from degradation or damage to the visual cortex, but still have functional eyes, are actually capable of some level of vision and reaction to visual stimuli but not a conscious perception; this is known as blindsight. People with blindsight are usually not aware that they are reacting to visual sources, and instead just unconsciously adapt their behavior to the stimulus.
On February 14, 2013, researchers developed a neural implant that gives the ability to sense infrared light which for the first time provides living creatures with new abilities, instead of simply replacing or augmenting existing abilities.
The Law of Common fate says that objects are led along the smoothest path. People follow the trend of motion as the lines/dots flow.
The Law of Similarity refers to the grouping of images or objects that are similar to each other in some aspect. This could be due to shade, colour, size, shape, or other qualities you could distinguish.
The Law of Proximity states that our minds like to group based on how close objects are to each other. We may see 42 objects in a group, but we can also perceive three groups of two lines with seven objects in each line.
The Law of Closure is the idea that we as humans still see a full picture even if there are gaps within that picture. There could be gaps or parts missing from a section of a shape, but we would still perceive the shape as whole.
The Law of Symmetry refers to a person's preference to see symmetry around a central point. An example would be when we use parentheses in writing. We tend to perceive all of the words in the parentheses as one section instead of individual words within the parentheses.
The Law of Continuity tells us that objects are grouped together by their elements and then perceived as a whole. This usually happens when we see overlapping objects. We will see the overlapping objects with no interruptions.
The Law of Past Experience refers to the tendency humans have to categorize objects according to past experiences under certain circumstances. If two objects are usually perceived together or within close proximity of each other the Law of Past Experience is usually seen.
Mechanoreceptors turn motion into electrical nerve pulses, which are located in the inner ear. Since sound is vibration, propagating through a medium such as air, the detection of these vibrations, that is the sense of the hearing, is a mechanical sense because these vibrations are mechanically conducted from the eardrum through a series of tiny bones to hair-like fibers in the inner ear, which detect mechanical motion of the fibers within a range of about 20 to 20,000 hertz, with substantial variation between individuals. Hearing at high frequencies declines with an increase in age. Inability to hear is called deafness or hearing impairment. Sound can also be detected as vibrations conducted through the body. Lower frequencies that can be heard are detected this way. Some deaf people are able to determine the direction and location of vibrations picked up through the feet.
Studies pertaining to audition started to increase in number towards the latter end of the nineteenth century. During this time, many laboratories in the United States began to create new models, diagrams, and instruments that all pertained to the ear.
Auditory cognitive psychology is a branch of cognitive psychology that is dedicated to the auditory system. The main point is to understand why humans are able to use sound in thinking outside of actually saying it.
Relating to auditory cognitive psychology is psychoacoustics. Psychoacoustics is more directed at people interested in music.
Haptics, a word used to refer to both taction and kinesthesia, has many parallels with psychoacoustics. Most research around these two are focused on the instrument, the listener, and the player of the instrument.
Two types of somatosensory signals that are transduced by free nerve endings are pain and temperature. These two modalities use and to transduce temperature and pain stimuli, respectively. Temperature receptors are stimulated when local temperatures differ from body temperature. Some thermoreceptors are sensitive to just cold and others to just heat. Nociception is the sensation of potentially damaging stimuli. Mechanical, chemical, or thermal stimuli beyond a set threshold will elicit painful sensations. Stressed or damaged tissues release chemicals that activate receptor proteins in the nociceptors. For example, the sensation of heat associated with spicy foods involves capsaicin, the active molecule in hot peppers.
Low frequency vibrations are sensed by mechanoreceptors called , also known as type I cutaneous mechanoreceptors. Merkel cells are located in the stratum basale of the epidermis. Deep pressure and vibration is transduced by lamellated (Pacinian) corpuscles, which are receptors with encapsulated endings found deep in the dermis, or subcutaneous tissue. Light touch is transduced by the encapsulated endings known as tactile (Meissner) corpuscles. Follicles are also wrapped in a plexus of nerve endings known as the hair follicle plexus. These nerve endings detect the movement of hair at the surface of the skin, such as when an insect may be walking along the skin. Stretching of the skin is transduced by stretch receptors known as bulbous corpuscles. Bulbous corpuscles are also known as Ruffini corpuscles, or type II cutaneous mechanoreceptors.
The heat receptors are sensitive to infrared radiation and can occur in specialized organs, for instance in pit vipers. The Thermoreceptor in the skin are quite different from the Homeostasis thermoceptors in the brain (POAH), which provide feedback on internal body temperature.
[[File:Philippe Mercier - The Sense of Taste - Google Art Project.jpg|thumb |Philippe Mercier - The Sense of Taste - Google Art Project]]
Within the structure of the lingual papillae are that contain specialized gustatory receptor cells for the transduction of taste stimuli. These receptor cells are sensitive to the chemicals contained within foods that are ingested, and they release based on the amount of the chemical in the food. Neurotransmitters from the gustatory cells can activate in the Facial nerve, glossopharyngeal, and Vagus nerve cranial nerves.
Salty and sour taste submodalities are triggered by the cations and Hydrogen ion, respectively. The other taste modalities result from food molecules binding to a G protein–coupled receptor. A G protein signal transduction system ultimately leads to depolarization of the gustatory cell. The sweet taste is the sensitivity of gustatory cells to the presence of glucose (or ) dissolved in the saliva. Bitter taste is similar to sweet in that food molecules bind to G protein–coupled receptors. The taste known as umami is often referred to as the savory taste. Like sweet and bitter, it is based on the activation of G protein–coupled receptors by a specific molecule.
Once the gustatory cells are activated by the taste molecules, they release onto the of sensory neurons. These neurons are part of the facial and glossopharyngeal cranial nerves, as well as a component within the vagus nerve dedicated to the gag reflex. The facial nerve connects to taste buds in the anterior third of the tongue. The glossopharyngeal nerve connects to taste buds in the posterior two thirds of the tongue. The vagus nerve connects to taste buds in the extreme posterior of the tongue, verging on the pharynx, which are more sensitive to Noxious stimulus such as bitterness.
Flavor depends on odor, texture, and temperature as well as on taste. Humans receive tastes through sensory organs called taste buds, or gustatory calyculi, concentrated on the upper surface of the tongue. Other tastes such as calcium and free fatty acids may also be basic tastes but have yet to receive widespread acceptance. The inability to taste is called ageusia.
There is a rare phenomenon when it comes to the gustatory sense. It is called lexical-gustatory synesthesia. Lexical-gustatory synesthesia is when people can "taste" words. They have reported having flavor sensations they are not actually eating. When they read words, hear words, or even imagine words. They have reported not only simple flavors, but textures, complex flavors, and temperatures as well.
The olfactory receptor neurons are located in a small region within the Nasal cavity. This region is referred to as the olfactory epithelium and contains Bipolar neuron. Each olfactory sensory neuron has that extend from the apical surface of the epithelium into the mucus lining the cavity. As airborne molecules are inhaled through the Human nose, they pass over the olfactory epithelial region and dissolve into the mucus. These odorant molecules bind to proteins that keep them dissolved in the mucus and help transport them to the olfactory dendrites. The odorant–protein complex binds to a receptor protein within the cell membrane of an olfactory dendrite. These receptors are G protein–coupled, and will produce a graded membrane potential in the olfactory neurons. In the Human brain, olfaction is processed by the olfactory cortex. Olfactory receptor neurons in the nose differ from most other neurons in that they die and regenerate on a regular basis. The inability to smell is called anosmia. Some neurons in the nose are specialized to detect . Loss of the sense of smell can result in food tasting bland. A person with an impaired sense of smell may require additional spice and seasoning levels for food to be tasted. Anosmia may also be related to some presentations of mild depression, because the loss of enjoyment of food may lead to a general sense of despair. The ability of olfactory neurons to replace themselves decreases with age, leading to age-related anosmia. This explains why some elderly people salt their food more than younger people do.
The semicircular canals are three ring-like extensions of the vestibule. One is oriented in the horizontal plane, whereas the other two are oriented in the vertical plane. The anterior and posterior vertical canals are oriented at approximately 45 degrees relative to the sagittal plane. The base of each semicircular canal, where it meets with the vestibule, connects to an enlarged region known as the Ampullary cupula. The ampulla contains the hair cells that respond to rotational movement, such as turning the head while saying "no". The stereocilia of these hair cells extend into the Ampullary cupula, a membrane that attaches to the top of the ampulla. As the head rotates in a plane parallel to the semicircular canal, the fluid lags, deflecting the cupula in the direction opposite to the head movement. The semicircular canals contain several ampullae, with some oriented horizontally and others oriented vertically. By comparing the relative movements of both the horizontal and vertical ampullae, the vestibular system can detect the direction of most head movements within three-dimensional (3D) space.
The vestibular nerve conducts information from sensory receptors in three Osseous ampullae that sense motion of fluid in three semicircular canals caused by three-dimensional rotation of the head. The vestibular nerve also conducts information from the utricle and the saccule, which contain hair-like sensory receptors that bend under the weight of (which are small crystals of calcium carbonate) that provide the inertia needed to detect head rotation, linear acceleration, and the direction of gravitational force.
The Time perception is also sometimes called a sense, though not tied to a specific receptor.
have the ability to change color using in their skin. Researchers believe that in the skin can sense different wavelengths of light and help the creatures choose a coloration that camouflages them, in addition to light input from the eyes. Other researchers hypothesize that in species which only have a single photoreceptor protein may use chromatic aberration to turn monochromatic vision into color vision, Study proposes explanation for how cephalopods see color, despite black and white vision explaining pupils shaped like the letter U, the letter W, or a dumbbell, as well as explaining the need for colorful mating displays. Some cephalopods can distinguish the polarization of light.
Blind people report they are able to navigate and in some cases identify an object by interpreting reflected sounds (especially their own footsteps), a phenomenon known as human echolocation.
The only orders of mammals that are known to demonstrate electroception are the dolphin and monotreme orders. Among these mammals, the platypus has the most acute sense of electroception.
A dolphin can detect electric fields in water using electroreceptors in Whisker arrayed in pairs on its snout and which evolved from whisker motion sensors. These electroreceptors can detect electric fields as weak as 4.6 microvolts per centimeter, such as those generated by contracting muscles and pumping gills of potential prey. This permits the dolphin to locate prey from the seafloor where sediment limits visibility and echolocation.
Spiders have been shown to detect electric fields to determine a suitable time to extend web for 'ballooning'.
Body modification enthusiasts have experimented with magnetic implants to attempt to replicate this sense. However, in general humans (and it is presumed other mammals) can detect electric fields only indirectly by detecting the effect they have on hairs. An electrically charged balloon, for instance, will exert a force on human arm hairs, which can be felt through tactition and identified as coming from a static charge (and not from wind or the like). This is not electroreception, as it is a post-sensory cognitive action.
In spite of its detection of IR light, the pits' IR detection mechanism is not similar to photoreceptors – while photoreceptors detect light via photochemical reactions, the protein in the pits of snakes is in fact a temperature-sensitive ion channel. It senses infrared signals through a mechanism involving warming of the pit organ, rather than a chemical reaction to light. This is consistent with the thin pit membrane, which allows incoming IR radiation to quickly and precisely warm a given ion channel and trigger a nerve impulse, as well as vascularize the pit membrane in order to rapidly cool the ion channel back to its original "resting" or "inactive" temperature.
Current detection is a detection system of water currents, consisting mostly of Vortex, found in the lateral line of fish and aquatic forms of amphibians. The lateral line is also sensitive to low-frequency vibrations. The mechanoreceptors are , the same mechanoreceptors for vestibular sense and hearing. It is used primarily for navigation, hunting, and schooling. The receptors of the Electroception are modified hair cells of the lateral line system.
Polarized light direction/detection is used by bees to orient themselves, especially on cloudy days. Cuttlefish, some beetles, and mantis shrimp can also perceive the polarization of light. Most sighted humans can in fact learn to roughly detect large areas of polarization by an effect called Haidinger's brush; however, this is considered an entoptic phenomenon rather than a separate sense.
of spiders detect mechanical strain in the exoskeleton, providing information on force and vibrations.
However, plants can perceive the world around them, and might be able to emit airborne sounds similar to "screaming" when stressed. Those noises could not be detectable by human ears, but organisms with a hearing range that can hear Ultrasound—like mice, bats or perhaps other plants—could hear the plants' cries from as far as away.
The traditional five senses are enumerated as the "five material faculties" ( ) in Hindu literature. They appear in allegorical representation as early as in the Katha Upanishad (roughly 6th century BC), as five horses drawing the "chariot" of the body, guided by the mind as "chariot driver".
Depictions of the five traditional senses as allegory became a popular subject for seventeenth-century artists, especially among Dutch and Flemish Baroque painters. A typical example is Gérard de Lairesse's Allegory of the Five Senses (1668), in which each of the figures in the main group alludes to a sense: Sight is the reclining boy with a convex mirror, hearing is the cupid-like boy with a triangle, smell is represented by the girl with flowers, taste is represented by the woman with the fruit, and touch is represented by the woman holding the bird.
In Buddhist philosophy, Ayatana or "sense-base" includes the mind as a sense organ, in addition to the traditional five. This addition to the commonly acknowledged senses may arise from the psychological orientation involved in Buddhist thought and practice. The mind considered by itself is seen as the principal gateway to a different spectrum of phenomena that differ from the physical sense data. This way of viewing the human sense system indicates the importance of internal sources of sensation and perception that complements our experience of the external world.
|
|